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Chapter 1

INTRODUCTION

For numerous reasons, the Monte Carlo (MC) method has become the method of choice

for performing complex shielding analyses, particularly where very accurate results are

necessary. The merits of using a computer code based on the MC method, such as accurate

modeling of complex geometries and the utilization of continuous-energy cross-section data,

are well known. However, there are also signi�cant di�culties associated with the MC

method, such as the computational time required to achieve statistically meaningful results

and the time and e�ort associated with the implementation of variance reduction techniques.

The use of variance reduction techniques is further complicated by the fact that improper

use can lead to incorrect results, which, depending on the user's experience, may or may not

be apparent to the user. To overcome these di�culties, the A3MCNP - Automatic Adjoint

Accelerated MCNP code[1, 2, 3, 4] has been developed. A3MCNP is an enhanced version

of the widely-used, general-purpose MCNP code[5] that has been modi�ed to automatically

prepare and utilize parameters for source and transport biasing based on the SN adjoint

function.

A3MCNP utilizes a new methodology, CADIS (Consistent Adjoint Driven Importance

Sampling)[1, 3], for using the SN adjoint function for automatic variance reduction of MC

calculations through source biasing and consistent transport biasing with the weight window

technique. Additionally, A3MCNP prepares the necessary input �les for performing multi-

group, three-dimensional adjoint SN calculations using TORT[6]. For this task, A3MCNP

prepares a mesh distribution and the corresponding mixtures and their identi�cation num-

bers and densities. Where possible, the information is extracted from the normal MCNP

input; requiring relatively few additional input cards. Upon completion of the adjoint

SN calculation, A3MCNP (1) reads the adjoint function, variable spatial mesh, and energy

group boundaries from the standard TORT output �le, (2) superimposes the variable spatial

mesh and energy grid onto the MCNP problem, (3) couples the original source distribu-

tions with the adjoint function to generate dependent source biasing parameters and weight

window lower bounds, and (4) performs the transport calculation using the superimposed

grids and calculated parameters. The grids facilitate the use of the detailed space- and
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energy-dependent importance function and do not impose any limitations on the transport

of particles.

A3MCNP has been used for the simulation of a few-real life problems, including a PWR

pressure vessel and cavity dosimeter[7, 8], a BWR core shroud[4], and spent fuel shipping

and storage casks[1, 9].

This manual is organized as follows: the development and implementation of the CADIS

methodology is described in Chapter 2. Chapter 3 presents methodologies for the automatic

generation of input �les for SN adjoint calculations from the MCNP problem description,

including generation of a deterministic spatial mesh, processing of multigroup material cross

sections, and the appropriate de�nition of the remaining required parameters. Chapter 4 de-

scribes the A3MCNP input and execution procedure. An example application of A3MCNP

is described in Chapter 5. Finally, Chapter 6 brie
y lists some of the enhancements that

are planned for the near future.
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Chapter 2

VARIANCE REDUCTION VIA THE ADJOINT

FUNCTION

2.1 Theory

Problems that can be solved by the MCmethod are essentially equivalent to integrations[10].

For example, the goal of most MC particle transport problems is to calculate the response

(i.e., 
ux, dose, reaction rate, etc.) at some location. This is equivalent to solving the

following integral

R =

Z
P

	(P )�d(P )dP ; (2.1)

where 	 is the particle 
ux and �d is some objective function in phase space (r;E; 
̂) 2 P .

From the adjoint identity,[11]

h	y
L	i = h	Ly	y

i; (2.2)

where (y) denotes adjoint, it can be shown that the response R at some location is also

given by

R =

Z
P

	y(P )q(P )dP ; (2.3)

where 	y and q are the adjoint function and source density, respectively, and Eqs. 2.1

and 2.3 are equivalent expressions for R. The function 	y(P ) has physical meaning as the

expected contribution to the response R from a particle in phase space P , or in other words,

the importance of a particle to the response.

To solve this integral with the MC method the independent variables are sampled from

q(P ), which is not necessarily the best probability density function (pdf) from which to

sample. An alternative pdf , q̂(P ) can be introduced into the integral as follows:

R =

Z
P

"
	y(P )q(P )

q̂(P )

#
q̂(P )dP ; (2.4)

where q̂(P ) � 0 and
R
P q̂(P )dP = 1.
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From importance sampling[12, 13], the alternative pdf q̂(P ) that will minimize the vari-

ance for R is then given by

q̂(P ) =
	y(P )q(P )R

P 	
y(P )q(P )dP

: (2.5)

If the �nal result R is known, then the MC integration will return R with zero variance.

However, in practice, the adjoint function is not known exactly, R cannot be solved by direct

integration, and thus, it is necessary to simulate the particle transport. For this process it

is desirable to use the biased source distribution in Eq. 2.5 that, in the limit of an exact

adjoint, leads to a zero variance solution.

Examining Eq. 2.5 reveals that the numerator is the detector response from phase-

space point P , and the denominator is the total detector response R. Therefore, the ratio

is a measure of the contribution from phase-space P to the detector response. Intuitively,

it is useful to bias the sampling of source particles by the ratio of their contribution to

the detector response, and therefore, this expression could also be derived from physical

arguments.

Since the source variables are sampled from a biased pdf , the statistical weight of the

source particles must be adjusted using the following \conservation" formula:

w (biased pdf) = wo (unbiased pdf) (2.6)

where wo is the weight before the variance reduction technique is applied, such that

W (P ) q̂(P ) = Wo q(P ); (2.7)

where Wo is the unbiased particle starting weight, which is set equal to 1. Substituting

Eq. 2.5 into Eq. 2.7 and rearranging, we obtain the following expression for the statistical

weight of the particles

W (P ) =

R
P 	

y(P )q(P )dP

	y(P )
=

R

	y(P )
: (2.8)

This equation shows an inverse relationship between the adjoint (importance) function and

the statistical weight. Previous work[14] in this area assumed this relationship and showed

it to be near optimal, and others have veri�ed this relationship through computational

analysis[15, 16]. However, in this work, beginning with importance sampling, this relation-

ship has been derived.

To consider the transport process, we examine the integral Boltzmann transport equa-

tion for particle density in the phase space P , given by

	(P ) =

Z
K(P 0

! P )	(P 0)dP 0 + q(P ); (2.9)
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where K(P 0 ! P )dP is the expected number of particles emerging in dP about P from

an event in P
0 and q(P ) is the source density. To transform Eq. 2.9 to be in terms of the

biased source distribution q̂(P ), we multiply it by

	y(P )R
	y(P )q(P )dP

; (2.10)

and de�ne

	̂(P ) =
	(P )	y(P )R
	y(P )q(P )dP

; (2.11)

to yield the following transformed equation

	̂(P ) =

Z
K(P 0

! P )	(P 0)dP 0 	y(P )R
	y(P )q(P )dP

+ q̂(P ); (2.12)

or

	̂(P ) =

Z
K(P 0

! P )	̂(P 0)(
	y(P )

	y(P 0)
)dP 0 + q̂(P ): (2.13)

This transformed equation can be written as

	̂(P ) =

Z
K̂(P 0

! P )	̂(P 0)dP 0 + q̂(P ); (2.14)

where

K̂(P 0
! P ) = K(P 0

! P )(
	y(P )

	y(P 0)
): (2.15)

In this transformed equation, the number of particles emerging in P from an event in

P
0 is being altered by the ratio

	y(P )

	y(P 0)
, which is the ratio of importances. This adjustment

to the transfer kernel can be accomplished through particle creation and termination, such

that:

for

	y(P )

	y(P 0)
> 1 particles are created (splitting); (2.16)

and

for

	y(P )

	y(P 0)
< 1 particles are destroyed (roulette): (2.17)

Since we are altering the number of particles emerging from an event, the statistical weight

of the particles must be corrected according to the conservation relation of Eq. 2.6, such

that

W (P )K(P 0
! P )(

	y(P )

	y(P 0)
) = W (P 0)K(P 0

! P ) (2.18)

or

W (P ) = W (P 0)
	y(P 0)

	y(P )
: (2.19)

While the development of the equations is based on the concept of zero variance, a zero

variance cannot be attained with estimation at particle events (e.g., collision, boundary
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crossings, etc.) because the number of events is itself a random variable and contributes to

the variance of the �nal result. However, minimum variance (even zero-variance solutions in

the limit) can be achieved when every sampling (source and transport) is made proportional

to its importance.

To administer the splitting and rouletting of particles, the weight window facilities that

are available within MCNP, which deal with particle weights, are used. We have related

these weights to particle importance via Eqs. 2.8 and 2.19. Since these relationships for the

particle statistical weights, which are used in source sampling and the particle transport

process, were derived from importance sampling in a consistent manner, the use of the

relations is referred to as Consistent Adjoint Driven Importance Sampling (CADIS).

2.2 Implementation into MCNP

In the previous section, expressions for source biasing parameters and particle statistical

weights were de�ned based on the adjoint (importance) function. In this section, we describe

how this information is used within MCNP and the related di�culties and issues.

2.2.1 Calculation of Variance Reduction Parameters

To calculate source biasing parameters over the phase-space (space, energy, and angle) the

source from the forward calculation is coupled with the adjoint function as shown in Eq.

2.5. Further, the particle transport is biased via Eqs. 2.8 and 2.19.

The space, energy, and angular dependent adjoint function may require a signi�cant

amount of storage, particularly for large 3-D problems. For example, the adjoint function for

a 3-D problem with 100�100�100 spatial meshes, 50 energy groups, and 80 directions (S8)

is 4E+09 values that, for double precision, require 32 gigabytes of storage. The SN method

can determine the angular independent (or scalar) adjoint accurately, but not necessarily the

angular dependent adjoint because of the limited number of directions. Therefore, because

of the memory requirements and inaccuracies of the angular dependent adjoint, we use the

space and energy dependent (scalar) adjoint function

�

y(r;E) =

Z
4�
	y(r;E; 
̂)d
̂ (2.20)

for calculating space and energy dependent source biasing and weight window parameters.

It should be noted, however, that the use of a less accurate adjoint (importance) function

may reduce the e�ciency (with respect to that from a very accurate adjoint function), but

does not impact the accuracy of the MC result.
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Source biasing

Source biasing allows the simulation of a larger number of source particles, with appropri-

ately reduced weights, in the more important regions of each variable (e.g., space, energy,

and angle). This technique consists of sampling the source from a biased (non-analog) prob-

ability distribution rather than from the true (analog) probability distribution, and then

correcting the weight of the source particles by the ratio of the actual probability divided

by the biased probability according to Eq. 2.6. Thus, the total weight of particles started

in any given interval is conserved, and an unbiased estimate is preserved.

To accelerate the MC calculation the source energy and position are sampled from the

biased source distribution q̂(r;E):

q̂(r; E) =
�
y(r;E)q(r; E)R

V

R
E �

y(r;E)q(r;E)drdE
=

�
y(r; E)q(r; E)

R

: (2.21)

Physically, the numerator is the detector response from space-energy element (dr; dE), and

the denominator is the total detector response R. Therefore, the ratio is a measure of the

relative contribution to the detector response.

In order to calculate the source biasing parameters, it is necessary to couple the SN

adjoint function and the forward Monte Carlo problem description. The main di�culty

lies in the fact that MCNP o�ers a great deal of 
exibility in the way the source spatial

distribution can be de�ned. The present version of A3MCNP is capable of calculating

biased source distributions and weight window lower bounds properly for point, surface,

and volume sources de�ned by points.

Transport biasing

As mentioned, the weight window technique, as implemented in the MCNP code, is a

space- and energy-dependent facility by which splitting/roulette are applied. The weight

window technique provides an alternative to geometric splitting/roulette and energy split-

ting/roulette for assigning space- and energy-dependent importances. To use the weight

window facility within MCNP, we need to calculate weight window lower bounds Wl such

that the statistical weights de�ned in (Eq. 2.8) are at the center of the weight windows

(intervals). The width of the interval is controlled by the parameter Cu, which is the ratio

of upper and lower weight window values (Cu = Wu

W
l

). Therefore, the space and energy

dependent weight window lower bounds Wl are given by

Wl(r;E) =
W

(Cu+1
2

)
=

R

�
y(r;E)

1

(Cu+1
2

)
; (2.22)

and during the transport process the weight window technique performs splitting or roulette

according to Eq. 2.19. In MCNP, the default value for Cu is 5.
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It is important to note that because the source biasing parameters and weight window

lower bounds are consistent, the statistical weights of the source particles (W (r;E) =
q(r;E)

q̂(r;E)
) are within the weight windows as desired. Moreover, if the statistical weights of

the source particles are not within the weight windows, the particles will immediately be

split or rouletted in an e�ort to bring their weights into the weight windows[5]. This will

result in unnecessary splitting/rouletting and a corresponding degradation in computational

e�ciency. For problems in which the adjoint function varies signi�cantly within the source

region (space and/or energy), this coupling between source and transport biasing is critical.

2.2.2 Integration of Importance Function into MCNP

The general version of MCNP provides facilities for energy and cell dependent weight win-

dows. This means that in order to use a �ne spatial weight window grid (which is necessary

in optically thick regions) with the standard version of MCNP, the user must subdivide the

MCNP cell based geometry such that the ratio of importances between adjacent geometric

cells is not too large. Because the importance ratios are not apriori known, this geometric

discretization is not straightforward and typically requires iterations of manual adjustments.

Further, the subdivision of the geometry into a very large number of cells is time consuming

and can actually degrade the e�ciency of the calculation. For these reasons, we use the

deterministic SN spatial mesh description to construct a separate, but related, geometric

grid to facilitate the use of the adjoint distribution. A3MCNP is able to read the binary


ux �le from the standard SN TORT[6] code (which contains the adjoint function and the

spatial mesh and energy group information) and superimpose the variable spatial mesh and

energy grid onto the standard MC problem in a manner transparent to the user. This

grid enables the use of the spatial and energy dependent importance function, and does

not directly a�ect the transport of particles. At various events in a particle history (e.g.,

collisions, surface crossings, and/or increments of mean free path), the grid is searched to

determine the importance of the phase-space within which the particle resides. The impor-

tance is then compared to the statistical weight of the particle and the appropriate action

is taken (e.g., splitting, Russian roulette, or no action).

Currently, the level of detail of the energy-dependent importance function is dictated

by the multigroup library used for the SN adjoint calculation (i.e., all groups are used).

2.2.3 Weight Checking

Various concepts for minimizing the amount of computational overhead associated with this

process have been examined. The �rst issue of concern is the determination of the appro-

priate occasion (or event) to check the particle's statistical weight. Because the MCNP

geometry does not need to be manually subdivided to assign the spatial importances, the

8



presently available weight checks (i.e., at collisions and surface crossings) are no longer

su�cient to control particle weight, and thus, large di�erences in the weight scored by indi-

vidual particles are possible. Additional (more frequent) weight checking has two opposing

e�ects: (1) there is a computational cost or penalty each time the weight is checked, and

this penalty is the time required by the searching routines to determine the importance of

the phase-space within which the particle resides and (2) more frequent checking leads to

more reliable results with well-behaved statistical convergence. Therefore, it is clear that

a criterion for an optimum or near-optimum compromise for checking particle statistical

weights is needed. Moreover, it is desirable that this criterion be problem independent.

In deterministic methods the spatial domain of the problem is discretized into relatively

�ne spatial meshes to enable the approximation of spatial derivatives with �nite di�erences.

Thus, the spatial meshes must be small enough to allow this approximation (i.e., the particle

density must not vary signi�cantly within a mesh cell). Because the particle density is

directly related to the material cross sections, and the corresponding mean free path, mfp

(the average distance a particle travels between collisions), it is common practice to use

mesh sizes on the order of one mfp to ensure that large variations do not occur and that

the aforementioned approximation is valid.

Analogously, in MC methods the particle statistical weight has been related to the ad-

joint function (Eq. 2.8), which is also directly related to the material cross sections or mfp.

Further, since the mfp is, by de�nition, the average distance a particle travels between colli-

sions, it is a logical, problem independent parameter by which particle statistical weight can

be controlled. Therefore, during particle transport, the distance to collision is determined

as before, but this distance is now compared to the mfp. If the distance to collision exceeds

the user speci�ed mfp increment, the particle is transported the distance of that increment

and the statistical weight is compared to the weight window boundaries for that region.

Parametric studies[1] analyzing the e�ect of the increment of mfp on problem e�ciency and

reliability support the A3MCNP default value of one mfp for weight checking.

The second issue of concern is the amount of time associated with checking the parti-

cle's statistical weight. The computational penalty in the MC calculation for using larger

numbers of spatial meshes or energy groups is related to the search routine. For the binary

search (which is currently being used), the average number of comparisons in a successful

search, assuming that each of the N intervals is equally likely, is a slowly increasing function

(i.e. / log2) of the number of intervals.[17]

9



Chapter 3

AUTOMATION OF ADJOINT SN CALCULATIONS

In this chapter the strategies for generating input �les for SN calculations directly from the

MCNP problem description are brie
y described. The automation of the generation of SN

input �les is intended to eliminate the tedious process of manually generating these �les

and require very little experience and e�ort on the part of the user.

3.1 Available Codes and Data

To calculate an adjoint function, the following codes and data are necessary: an SN trans-

port code, a cross-section mixing/processing code, and an appropriate multigroup cross-

section library. Because there are a number of publicly available codes and cross-section

libraries that are acceptable for this work, new codes were not created. The current ver-

sion of A3MCNP uses the three-dimensional SN TORT code[6] for the adjoint transport

calculation and the GIP code[18] to mix/process the multigroup cross-section data into

macroscopic cross-section mixtures prior to performing the transport calculation.

In this work, the adjoint function is used for variance reduction of MC calculations

(from which the �nal (correct) answer is sought), and thus it is not necessary to solve

the adjoint problem with a very high degree of accuracy. Consequently, the choice of the

multigroup library is not as critical as it is for a direct (forward) calculation. Studies[3] have

shown that a relatively few group collapsed adjoint (�2-5 groups) is capable of increasing

the calculational e�ciency to approximately half of the observed maximum. Therefore, a

multigroup library should be selected (by the user) based on the following criteria: problem

applicability, accuracy, memory/disk space requirements, and CPU time. In the current

version of A3MCNP, it is assumed that the user chooses an appropriate multigroup cross-

section library (i.e., the user has the 
exibility to use various multigroup cross-section

libraries).
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3.2 Automatic Input Generation for SN Calculations

Automatic variance reduction of a MC calculation with an SN adjoint function requires

the generation of an input �le for a SN adjoint calculation and the generation of an input

�le for a cross-section mixing code. Hence, in this section strategies are described for the

automation of these tasks.

A MC (MCNP) model or input �le describes a particular problem in terms of combina-

torial geometry and continuous energy, while a deterministic method requires discretization

of the geometry and energy. Therefore, while the MC input �le contains most of the in-

formation required to generate a corresponding deterministic input �le, further processing

beyond simple translation is necessary. Speci�cally, the MC geometry description must be

appropriately discretized, a suitable energy group structure must be speci�ed, the material

cross sections must be processed, and various SN input parameters must be de�ned.

The task of SN input generation can be subdivided into the following four subtasks:

(1) spatial mesh generation, (2) adjoint source speci�cation, (3) appropriate assignment of

remaining required input parameters, and (4) material cross-section preparation.

3.2.1 Mesh Generation/Projection

The MC geometry description must be discretized into a spatial mesh that is �ne enough

to adequately describe the material boundaries and enable an accurate deterministic cal-

culation, while not being re�ned to the extent that the computational expense and/or disk

space requirements for the deterministic calculation becomes prohibitive. It is not the in-

tention of the adjoint calculation to solve the problem exactly, thus a compromise between

accuracy and e�ciency is required. Consequently, some approximations in the mesh gener-

ation/projection are acceptable.

The mesh generation approach in A3MCNP[1] involves initially overlaying the entire

problem with a �ne spatial mesh, and then employ routines that currently exist in MCNP

to assign materials to meshes based on mesh center coordinates. Based on the �ne mesh

material boundaries and the material mfps (which can be approximately determined with

a short initial MCNP calculation) the �ne meshes may be back-thinned (combined) into a

coarser mesh description. The back-thinning approach takes full advantage of the discon-

tinuous mesh feature of TORT.

This original approach to mesh generation takes full advantage of capabilities that cur-

rently exist in MCNP and, since meshes are not being explicitly �tted to geometric bodies,

does not su�er from the limitations of current mesh generators. This mesh generator is

applicable to any geometry that can be described within MCNP. However, geometries de-

scribed by repeated structures are not currently allowed.

The current implementation is for three dimensional Cartesian geometry in a format
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Figure 3.1: Mesh Generation Example 1: Box-In-A-Box

suitable to the 3-D SN code TORT[6]. The mesh generation technique is perhaps best

understood with the assistance of a couple of simple examples.

Mesh generation example 1: box-in-a-box

The �rst example is a 4 cm cube centered within a 12 cm cube, and is depicted in Fig. 3.1.

The mesh generation routine requires the user to supply nine parameters for the initial �ne

mesh, these include the bounding x, y, and z boundaries (6 values) and an x, y and z mesh

thickness (3 values). For this example problem, the x, y and z upper and lower boundaries

are all 0.0 and 12.0, respectively, and a mesh thickness of 1 cm is speci�ed. From these

values, a uniform �ne mesh is generated over the range speci�ed. Note that this approach

to de�ning the initial �ne mesh (i.e., requiring only nine values) was adopted because of its

simplicity.

In the MC method, particles are tracked or followed through a problem. At each col-

lision, it is necessary to determine where the particle is located in order to calculate the

distance to the next collision and the distance to the next boundary. As a result, routines

exist within MCNP that check the sense of a position with respect to the surfaces and as-

sociate the position to a cell. Each cell has an associated material. These existing routines

are employed to assign materials to meshes based on mesh center coordinates. Therefore,

a uniform mesh and material composition is speci�ed for the entire problem.

For veri�cation of the mesh generation capability and for assistance in checking the

12



total # of meshes =    1728

TORT Mesh Generation by A3MCNP

Figure 3.2: Uniform Generated Mesh for Example 1

quality of a generated mesh, it is necessary to be able to view the mesh. The mesh generation

routine will generate a postscript �le containing a 2-D view of the mesh for any requested

axial (z) plane (or optionally, all axial z-planes). Figure 3.2 shows the mesh and material

speci�cation through the center of the cube as generated directly by the mesh generation

routine. Note that the total number of meshes are given immediately below the geometry.

Although we have a fully speci�ed geometry, in terms of mesh and materials, it may

contain an unnecessarily large number of meshes. Because the number of spatial meshes

is directly related to computer time and memory/disk space requirements for performing

the SN calculation, it is desirable to minimize the number of meshes to whatever extent

possible. The mesh boundaries are dictated by material composition (or mfp) and by

material boundaries. These two criteria are used to remove unnecessary meshes via a

process referred to as back-thinning. The user supplies a back-thinning parameter for each

material, where this parameter is the maximum allowed thickness of any mesh within that

material (e.g. a reasonable choice for this parameter is the material mfp). Then based

on this parameter and the material boundaries, the �ne meshes are combined (or thinned)

where appropriate. To demonstrate this process with the example problem, assume that

the mfp of the center material is 1 cm and the mfp of the outer material is 2 cm. Figure 3.3

shows the resulting mesh distribution. Note the original number of meshes and the number

13



of meshes after the back-thinning process. For this simple example, the number of meshes

is reduced by 70%. The input �le used to generate the mesh in Fig. 3.3 is provided in Fig.

A.1 of Appendix A.

Mesh generation example 2: Spheres-In-A-Box

The second example is intended to illustrate the mesh generation capabilities for a combi-

nation of rectangular and curved bodies. The problem is characterized by two concentric

spheres of radii 4 cm and 8 cm centered within a 20 cm cube, and is depicted in Fig. 3.4.

For this example problem, the x,y, and z upper and lower boundaries are all -10.0 cm and

10.0 cm, respectively, and a mesh thickness of 0.5 cm is speci�ed over the x and y ranges,

and 1.0 cm over the z range. From these values, a uniform �ne mesh is generated over

the range speci�ed, and is shown in Fig. 3.5. The �ne mesh thickness (0.5 cm) is used to

generate a mesh that very accurately represents the curved surfaces of the spheres.

To reduce the number of meshes, we once again invoke the back-thinning process. For

this problem, assume that the mfp of the inner sphere, outer sphere, and outer material are

1, 1.5, and 2 cm, respectively. Fig. 3.6 shows the resulting mesh distribution. The 32,000

original meshes are reduced to 5,260 meshes, a reduction of nearly 84%.

It should be apparent that the quality of the mesh representation and number of �nal

meshes is dependent on the selection of the initial �ne mesh de�nition. If one employs a

very �ne initial mesh, the material boundaries will be represented very well, but the total

number of �nal meshes, particularly for problems containing curved surfaces, may be large.

On the other hand, if one employs a coarser �ne initial mesh, the material meshes will not

be represented as well, but the total number of �nal meshes will be less. In an attempt

to demonstrate this behavior, we generate a new mesh for this example problem based on

an initial �ne mesh thickness of 1 cm for the x, y and z ranges. This mesh is shown in

Fig. 3.7. Note that the previous uniform mesh, which is shown in Fig. 3.5, has a factor

of 4 more meshes. Now, with the same back-thinning parameters the mesh is thinned to

that shown in Fig. 3.8. While some accuracy in terms of the representation of material

boundaries is lost, the �nal number of meshes (4316) is approximately 22% lower than that

of our previously back thinned mesh (5260, see Fig. 3.6).

Thus, the generation of an optimum mesh (in terms of material representation and

minimization of number of meshes) may require some experience with the mesh genera-

tor. However for our purposes, a reasonable, not optimum, mesh is su�cient, and can be

generated quickly and easily.

3.2.2 Generation of SN Input Files

The remaining two subtasks necessary for automating the generation of SN input �les are

the speci�cation of the adjoint source and the speci�cation of the remaining required SN

input parameters.

14



original # of meshes =    1728
# of meshes (after back-thinning) =    512
reduction of  70.4%

TORT Mesh Generation by A3MCNP

Figure 3.3: Back-Thinned Mesh for Example 1
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Figure 3.4: Mesh Generation Example 2: Spheres-In-A-Box

total # of meshes =   32000

TORT Mesh Generation by A3MCNP

Figure 3.5: Uniform Generated Mesh for Example 2
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original # of meshes =   32000
# of meshes (after back-thinning) =   5260
reduction of  83.6%

TORT Mesh Generation by A3MCNP

Figure 3.6: Back-Thinned Mesh for Example 2
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total # of meshes =    8000

TORT Mesh Generation by A3MCNP

Figure 3.7: Alternative Uniform Generated Mesh for Example 2
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original # of meshes =    8000
# of meshes (after back-thinning) =   4316
reduction of  46.0%

TORT Mesh Generation by A3MCNP

Figure 3.8: Alternative Back-Thinned Mesh for Example 2
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3.2.3 Adjoint Source

The source in the adjoint problem is equivalent to the detector in the direct (forward)

problem. The user must de�ne a cell in the MCNP input �le corresponding to the detector

or region of interest. Then, by the same means by which materials are assigned to meshes,

a uniform source is assigned over the spatial meshes that correspond to the user speci�ed

cell (region of interest). For numerical reasons, the user must de�ne a reasonably �ne mesh

in the detector region. This can be accomplished by reducing the back-thinning parameter

for the region/material of interest. The adjoint group boundaries and source spectrum or

response function are taken directly from the MCNP input �le, through the use of new

input keywords. These values are entered in the normal MCNP convention (i.e., values are

entered from low energies to high energies and energy boundaries are in units of MeV).

3.2.4 Other SN Input Parameters

In addition to the variables associated with the geometry and source, there are a few TORT

parameters that must be speci�ed. In the current version of A3MCNP, these following

parameters are set to speci�c values:

ntscl=2; scalar 
ux output is written to logical unit 2

iadj=1; adjoint solution

mode=1; �-weighted di�erencing scheme

theta=0.3; � value for �-weighted di�erencing scheme[19, 20]

locobj=#; initial memory allocation is calculated based on the number of spatial meshes

and energy groups

ingeom=0; x-y-z geometry indicator

mm=96; maximum number of directions (S8)

Because many shielding problems are characterized by a small detector in a region

containing low density material (e.g., air), quadrature order can be important in the adjoint

problem, in which the detector is replaced by the adjoint source. S8 is adequate for the

majority of shielding type adjoint problems.

Notable values for which the default values are changed include:

nfxmx=40; maximum number of 
ux iterations (default=20)

epp=0.005; pointwise 
ux convergence criteria (default=0.001).
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The maximum number of 
ux iterations is increased with respect to the default in an

attempt to converge the �rst few groups (low energy groups) which can often be di�cult

or slowly converging. The pointwise 
ux convergence is relaxed slightly with respect to the

default because we are not interested in high accuracy.

If any of the above values are not suitable for a given problem, the user is free to

change them. Users are referred to the TORT manual[6] for detailed information on input

parameters.

3.2.5 Generation of Input Files for Cross-Section Mixing

One of the distinctions between MC and deterministic methods, is that MC methods are

capable of performing simulations with continuous energy or point-wise cross-section data.

Thus when translating a MC input �le into a corresponding deterministic input �le, the

energy dependence of the material cross sections must be discretized into energy groups.

The selection of these groups must be based on the material cross sections. As with the

spatial discretization, a compromise between accuracy and e�ciency must be made.

Another distinction between the two methods is the speci�cation of materials. In MC

codes such as MCNP, a material is de�ned by isotope identi�ers, referred to as ZAIDs, their

corresponding weight or atomic fraction, and a total atom or mass density. For SN transport

codes, on the other hand, it is necessary to mix/process the multigroup cross-section data

into macroscopic cross-section mixtures prior to performing the transport calculation.

To automate the TORT calculation, it is necessary to automate the cross-section mix-

ing/processing, which requires the generation of an input �le for the GIP code. The typical

GIP input �le consists of �ve sections containing the following information: (1) basic pa-

rameters describing the multigroup library (e.g., number of groups, position of total cross

section, etc.), (2) material (mixture) numbers, (3) component (isotope) numbers, (4) nu-

clide identi�ers, and (5) atom densities. The information required in the �rst four of these

sections is speci�c to the multigroup library, thus requiring additional user input.

The basic parameters describing the multigroup library are entered via a new MCNP

input card. The atom densities and material mixture speci�cations, in terms of ZAIDs

(isotope identi�ers), are taken directly from the MCNP input. For the speci�cation of

material mixtures in GIP, the MCNP ZAIDs must be associated with (\translated into") the

multigroup library speci�c component numbers (isotope identi�ers). The major di�culty

with automating the generation of GIP input �le lies in this association. Because there

is no consistency in component numbers between multigroup libraries, this association is

di�erent for each multigroup library, and thus, cannot be hard-coded. To solve this problem,

the user is required to generate an additional input �le (named zaid.in). The �rst section

of this �le contains two columns of numbers; the �rst column lists the MCNP isotope

ZAIDs and the second column lists the associated library speci�c component numbers.
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Thus, with the use of this information the multigroup component numbers are matched

with the appropriate ZAIDs in the material description to produce material de�nitions in

terms of the multigroup component numbers. The second (last) section of this �le contains

the multigroup library speci�c nuclide identi�ers required by GIP. Once the zaid.in �le is

generated for a particular multigroup library, the generation of GIP input �les from MCNP

material descriptions is completely automated. Further, the generation of the zaid.in �le

is completely straightforward. An example of the zaid.in �le for the CASK[21] multigroup

cross-section library is provided in Fig. A.2 of Appendix A. zaid.in �les are available for a

number of widley-used multigroup cross-section libraries.
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Chapter 4

USAGE - INPUT CARDS & EXECUTION

The methodologies described in the previous two chapters have been implemented into the

standard MCNP code. The modi�ed version of MCNP, designated A3MCNP - Automatic

Adjoint Accelerated MCNP, can automatically: (1) generate input �les for SN adjoint

calculations and (2) calculate and utilize variance reduction parameters from SN adjoint

functions.

Figure 4.1 shows the automated process for variance reduction of MC calculations with

A3MCNP. The A3MCNP input �le consists of a standardMCNP input �le with the following

additional information:

� boundary conditions for the TORT calculation (6 values for 3-D)

� de�nition of initial �ne mesh (9 values)

� coarse meshes for PCR in TORT

� a control parameter for activating the automatic mesh generation for uniform and/or

back-thinned mesh

� MCNP cell number corresponding to the region of interest

� multigroup library parameters

� multigroup energy group boundaries

� response function.

With this input �le, and the material processing input �le (zaid.in), A3MCNP generates

input �les for TORT and GIP. After the execution of these two codes, A3MCNP reads the

3-D scalar adjoint function from the standard TORT binary VARSCL (VARiable SCaLar)

output �le and couples the original source distributions with the adjoint function to generate

the source biasing and weight window parameters. These parameters are then used by

A3MCNP to perform the transport calculation. With the use of script �les, this process is

automated.
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Figure 4.1: Automated Process for Variance Reduction with A3MCNP
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4.1 A3MCNP Input Cards

As stated, the process has three distinct steps, which include: (1) generation of input

and execution of the SN adjoint calculation, (2) processing of the adjoint function into

VR parameters, and (3) performing the actual transport calculation. The input cards are

described below according to their associated step in the overall process.

4.1.1 STEP 1: Sn Input Preparation Cards

The following cards have to do with the �rst step in the process (i.e., automatic generation

of TORT and GIP input �les from the A3MCNP input �le).

SNGP - Sn General Input Parameters [REQUIRED INPUT CARD]

Form: SNGP ISN ISRC IGM NSCTM IHT IHM IUPS NEUT

ISN = TORT input generation

ISN = 0/1/2 = no mesh generation/discontinuous mesh/uniform mesh

ISRC = MCNP cell for the adjoint source

IGM = total number of energy groups for TORT calculation

NSCTM = maxium order of scattering expansion for TORT calculation

IHT = position of total cross section in cross section table

IHM = length of cross section table for each group

IUPS = number of upscatter cross sections per group

NEUT = last neutron group

Default: ISN=0, TORT input is not generated; ISRC=0, no default value; IGM=40;

NSCTM=3; IHT=3; IHM=43; IUPS=0, no upscattering; NEUT=22. Default values for

IGM, NSCTM, IHT, IHM, IUPS, and NEUT correspond to the CASK library, which is

currently the default multigroup library.

SNMSH - Sn Spatial Mesh Input Preparation [REQUIRED INPUT CARD]

Form: SNMSH XL XU YL YU ZL ZU DX DY DZ KPRN

XL = lower x boundary

XU = upper x boundary

YL = lower y boundary
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YU = upper y boundary

ZL = lower z boundary

ZU = upper z boundary

DX = initial thickness of x mesh

DY = initial thickness of y mesh

DZ = initial thickness of z mesh

KPRN = z-plane of TORT mesh for plot of mesh distribution; negative entry

results in generation of a plot for each z-plane (plot(s) are written

to mesh.ps �le)

Usage: The x,y,z boundaries are used to de�ne the boundaries of the TORT problem, while

the DX, DY, and DZ entries are used to de�ne a uniform mesh throughout the problem.

The x,y,z boundaries must correspond to the MCNP problem boundaries.

Default: none

SNBC - Sn Boundary Conditions

Form: SNBC IBL IBR IBI IBO IBB IBT

IBL = left boundary condition (lower x)

IBR = right boundary condition (upper x)

IBI = inside boundary condition (lower y)

IBO = outside boundary condition (upper y)

IBB = bottom boundary condition (lower z)

IBT = top boundary condition (upper z)

Usage: 0/1/2 = vacuum/re
ective/periodic

Default: vacuum boundary conditions for all sides

SNSI - Sn Energy Group Boundaries [REQUIRED INPUT CARD]

Form: SNSI Eg1, Eg2, ... EIGM�1, EIGM

E = upper energy group boundaries for Sn adjoint calculation
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Usage: The upper energy group boundaries are entered from lowest energy group to highest

energy group in units of MeV. A total of IGM values are expected. In the case of a coupled

neutron-gamma calculation, the energy group boundaries for the gamma groups should be

entered �rst, followed by the group boundaries for the neutrons.

Default: none

SNSP - Sn Source Energy Spectrum [REQUIRED INPUT CARD]

Form: SNSP SPg1, SPg2, ... SPIGM�1, SPIGM

SP = group source for Sn adjoint calculation, which should correspond to the

response function for the forward MCNP calculation

Usage: The energy spectrum should be entered from lowest energy group to highest energy

group. A total of IGM values are expected. In the case of a coupled neutron-gamma

calculation, the gamma spectrum should be entered �rst, followed by the neutron spectrum.

Default: none

SNTHN - Sn Mesh Back-Thinning Parameters [OPTIONAL INPUT CARD]

Form: SNTHN BTP1, BTP2, ... BTPNM�1, BTPNM

BTP = back-thinning parameter for each unique material. The value is used to

establish the maximum mesh thickness (cm) for each material.

Default: zero - back-thinning is not performed

SNACC - Course-Mesh Values for Sn Acceleration [OPTIONAL INPUT CARD]

Form: SNACC NXCR, NYCR, XCR1, XCR2, ... XCRNXCR�1, XCRNXCR, YCR1, YCR2,

... YCRNY CR�1, YCRNY CR

NXCR = number of course meshes in x-direction

NYCR = number of course meshes in y-direction

XCR = actual x course meshes

YCR = actual y course meshes
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4.1.2 STEPS 2 & 3: VR Parameter Calculation and Transport Card

The following card is used in the steps following the execution of GIP and TORT to tell

A3MCNP to either (1) read the 3-D adjoint function from the TORT binary VARSCL

(VARiable SCaLar) output �le and couple the original source distributions with the adjoint

function to generate the source biasing and weight window parameters or (2) perform the

transport calculation using the calculated VR parameters.

WWA - Adjoint Weight Window Parameters [REQUIRED INPUT CARD]

Form: WWA:n WIGM AAAON IMFP

n = N for neutrons, P for photons

WIGM = total number of weight window energy intervals (energy groups)

AAAON = 0 = calculate weight window and source biasing parameters

= 1 = use calculated weight window and source biasing parameters

IMFP = increment for mfp weight checkin, defaul=1

Usage: AAAON equals 0 for step 2 and 1 for step 3.

Default: none
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Chapter 5

EXAMPLE APPLICATION OF A3MCNP

A shipping cask problem is a multi-region shielding problem that features both rectangular

and cylindrical geometries, and thus, is useful for demonstrating A3MCNP, particularly

the mesh generation capabilities. Therefore, in this section A3MCNP is applied to the

Four-Assembly PWR Depleted Uranium Shipping Cask problem that is clearly described

in the CASK multigroup library documentation (Ref. [21]). The problem consists of four

rectangular fuel assemblies centered within a large cylindrical cask composed of steel and

depleted uranium The objective is to calculate dose external to the cask. Figure 5.1 shows

a radial slice through one quarter of the problem as model in MCNP. The neutron source

is uniformly distributed throughout the fuel assembly with a Cf-252 �ssion spectrum, as

de�ned in [21]. The circular region in the upper right-hand corner of the �gure represents

the dose location. Figure 5.2 shows an axial slice through the problem at the azimuthal

coordinate of 45�, as prepared by MCNP. The dose location is shown in the bottom right-

hand corner of this �gure.

The purpose of this problem is to demonstrate the automatic variance reduction ca-

pabilities of A3MCNP in general, and to examine the mesh generation in particular. By

adjusting the mesh generation parameters, di�erent mesh descriptions for the SN adjoint

calculation will be produced. Therefore, we examine the e�ect of the mesh on total compu-

tational time. The CASK 22-group P3 neutron cross-section library[21] was employed for

the SN adjoint calculations. It should be noted that this is not a deep-penetration problem,

and thus, is not very di�cult from a computational standpoint. As a result, this problem

is not well suited for demonstrating the signi�cant speedups[3, 4] that are possible with

A3MCNP. This problem was selected for demonstration due to its relative simplicity and

general similarity to other more challenging problems (e.g., reactor pressure vessel, BWR

core shroud, rail-type spent fuel shipping cask, concrete spent fuel storage cask, etc.)

For the calculation of dose at the detector position, the adequacy of the radial mesh de-

scription is clearly more important than that of the axial mesh description. As mentioned,

the goal of the adjoint calculation is not to calculate the correct answer, but rather to cal-

culate a function with approximately the correct shape. To accomplish this, it is necessary

29



0.0
0.0635

22.860
23.019

47.625
48.895

59.055

62.865
64.000

fuel

water

steel

depleted U

steel

air

detector

Figure 5.1: Radial Slice Through One Quarter of the Four-Assembly PWR Depleted Ura-

nium Shipping Cask
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Table 5.1: Average Material mfps and Back-Thinning Parameters for the Shipping Cask

Problem

mfp back-thinning

material (cm) parameter (cm)

steel-boron 3.1 3.1

fuel 2.0 2.0

water 1.0 1.0

steel 3.0 3.0

depleted U 2.3 2.3

air 3000 5.0

to have a mesh description that preserves the total thicknesses of the various shielding ma-

terials. However, accurate representation of material boundaries requires a large number

of meshes, and subsequently, greater computer CPU time. This is particularly true when

representing cylindrical boundaries with rectangular meshes as is the case for this problem.

In order to investigate the e�ect of the mesh on the adjoint accuracy, through its e�ec-

tiveness for variance reduction of the MC calculation, the following cases are considered:

Case 1: a 1�1�2 cm (x; y; z) �xed mesh over the entire problem (as shown in Fig. 5.3)

Case 2: a 2�2�2 cm (x; y; z) �xed mesh over the entire problem (as shown in Fig. 5.4)

Case 3: a 2�2�3 cm (x; y; z) �xed mesh over the entire problem (same as shown in Fig.

5.4)

Case 4: a discontinuous mesh derived from an initial �ne mesh of 1�1�2 with back-

thinning parameters based on mfps (as shown in Fig. 5.5)

Case 5: a discontinuous mesh derived from an initial �ne mesh of 1.5�1.5�2 with back-

thinning parameters based on mfps (as shown in Fig. 5.6).

As shown in Fig. 5.3, the Case 1 mesh description represents the material bound-

aries/thicknesses fairly well. However, the mesh sizes are smaller than the material mfps

require. The Case 2 mesh description, as shown in Fig. 5.4, does not represent the material

thicknesses nearly as well as the Case 1 mesh, but in general, the mesh sizes are acceptable

when compared to the material mfps. Cases 4 and 5 are representative of a compromise

between minimizing the number of meshes and preserving material boundaries. Table 5.1

lists the average material mfps as calculated by MCNP, and the back-thinning parameters

used for creating the mesh descriptions for Cases 4 and 5.
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total # of meshes =  184320

TORT Mesh Generation by A3MCNP

Figure 5.3: Case 1: 1�1�2 cm �xed mesh over the entire problem
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total # of meshes =   46080

TORT Mesh Generation by A3MCNP

Figure 5.4: Case 2: 2�2�2 cm �xed mesh over the entire problem
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original # of meshes =  184320
# of meshes (after back-thinning) = 103032
reduction of  44.1%

TORT Mesh Generation by A3MCNP

Figure 5.5: Case 4: discontinuous mesh derived from initial �ne mesh of 1�1�2
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original # of meshes =   83205
# of meshes (after back-thinning) =  53175
reduction of  36.1%

TORT Mesh Generation by A3MCNP

Figure 5.6: Case 5: discontinuous mesh derived from initial �ne mesh of 1.5�1.5�2

36



Table 5.2: CASK Neutron Energy Group Boundaries

Upper Energy Group Upper Energy Group

Group Boundaries (MeV) Group Boundaries (MeV)

1 1.50E+01 12 1.11E+00

2 1.22E+01 13 5.50E-01

3 1.00E+01 14 1.11E-01

4 8.18E+00 15 3.35E-03

5 6.36E+00 16 5.83E-04

6 4.96E+00 17 1.01E-04

7 4.06E+00 18 2.90E-05

8 3.01E+00 19 1.07E-05

9 2.46E+00 20 3.06E-06

10 2.35E+00 21 1.12E-06

11 1.83E+00 22a 4.14E-07
a Lower energy of group 22 is 1.00E-10 MeV

Figures 5.7 and 5.8 show the adjoint distributions for energy group 10 over an entire

plane for Cases 1 and 2, respectively. These �gures nicely demonstrate the behavior of the

adjoint (importance) function throughout the problem for the two cases.

The variation of the adjoint function with energy is shown in Fig. 5.9, which plots the

Case 1 radial distributions (through the azimuthal coordinate of 45�) for several energy

groups. The energy groups to which the adjoint functions are referenced, correspond to the

CASK library. The neutron energy group boundaries for the CASK library are provided in

Table 5.2. To examine the e�ect of the mesh descriptions on accuracy, Figs. 5.10 through

5.12 compare the calculated adjoint functions from Cases 1 and 2 for energy groups 3, 10,

and 20, respectively. The adjoint functions corresponding to Case 2 follow the adjoints from

Case 1 near the detector (adjoint source), but begin to deviate in the cask. The di�erences

between the two cases are larger for the lower energy groups, reaching nearly six orders of

magnitude at the cask center for group 20. However, the general shapes remain similar

The e�ectiveness of the various cases for the variance reduction of MC calculations, is

demonstrated in Table 5.3, which compares unbiased MCNP results to those calculated

with A3MCNP. While the A3MCNP results were each generated with 15 minutes of CPU

time, a non-zero estimate could not be obtained by the unbiased case in the same amount of

CPU time. To obtain a non-zero estimate and a value for the FOM, the unbiased case was

allowed to run for 120 minutes of CPU time. It is immediately clear from the FOM values,

that A3MCNP is capable of increasing the e�ciency of this calculation by a factor of �400,

regardless of the mesh description considered. In terms of the MC calculation alone, Case
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Figure 5.7: Case 1 Adjoint Function Distribution for Energy Group 10 (1.8-2.4 MeV)
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Figure 5.8: Case 2 Adjoint Function Distribution for Energy Group 10 (1.8-2.4 MeV)
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Figure 5.9: Case 1 Adjoint Distributions for Various Groups
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Figure 5.10: Comparison of Case 1 and 2 Adjoint Distributions for Group 3
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Figure 5.11: Comparison of Case 1 and 2 Adjoint Distributions for Group 10
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Figure 5.12: Comparison of Case 1 and 2 Adjoint Distributions for Group 20
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Table 5.3: E�ect of SN Adjoint on Dose Calculation at the Radial Detector Location

Case dose(mrem/hr) R VOV FOM

unbiased 52.93 0.40 0.201 0.052

1 34.02 0.06 0.063 20

2 32.80 0.05 0.039 25

3 33.61 0.06 0.175 18

4 31.37 0.05 0.020 29

5 33.82 0.05 0.034 30

5 is the most e�cient, exhibiting a FOM nearly 600 times larger than that of the unbiased

case. It is interesting to note that the Case 2 mesh description, which does not represent

the material boundaries particularly well and was shown to generate adjoint functions that

vary signi�cantly from those calculated with the more accurate mesh description of Case 1,

is quite e�ective for this problem. This demonstrates the e�ectiveness of an approximate

adjoint function.

The 3-D SN calculation can require a signi�cant amount of CPU time. In general,

the greater the number of meshes, the greater the CPU time. Therefore, it is appropriate

to compare the e�ciency of the various cases in terms of total CPU time. In order to

make such a comparison, it is necessary to qualify the MCNP CPU time to a particular

precision. Table 5.4 lists the number of meshes and subsequent time required by the TORT

calculations, the time required by the MCNP calculations to achieve a 1� uncertainty of

2%, and the total CPU time for the various cases. While the time required by the TORT

calculation can actually exceed that of the A3MCNP calculation (e.g., for Cases 1, 4, and 5),

the total time is still reduced by a factor of �100. The amount of time that TORT requires

to calculate the adjoint is less than that required by an analyst to develop comparable

variance reduction parameters. Further, computer time is unquestionably less expensive

than an analyst's time. Comparing the speedups in the last column of Table 5.4, A3MCNP

is a factor of �200 more e�cient than the unbiased case.
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Table 5.4: E�ect of SN Mesh on Total Computational Time for the Radial Detector Location

TORT MCNP Total Speedup

# of CPU time CPU time CPU time (unbiased total CPU/

Case meshes (minutes) (minutes) (minutes) total CPU)

unbiased |{ | 48,077 48,077 1

1 184320 404 115 529 91

2 46080 87 100 187 257

3 30720 45 139 184 261

4 103032 364 86 450 107

5 53175 144 83 227 211
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Chapter 6

FUTURE WORK

A3MCNP continues to be upgraded and enhanced to enable greater user 
exibility and

to add new features. A brief list of the planned enhancements (in no particular order) is

provided below.

6.1 Planned Enhancements for A3MCNP

� Upgrade modi�cations to MCNP version 4C

� Add capability to couple to PENTRAN[22]

� Incorporate source biasing for surface and volume sources that are not speci�ed with

points

� Allow user to explicitly specify Z-mesh dimensions

� Add ability to back-thin in Z-dimension

� Enable automatic mesh generation with MCNP repeated structures

� Add capability to automatically project the source spectrum and response function

onto the group structure of the multigroup library being used.

� Incorporate source biasing for use with the surface source restart �le

� Add capability to generate multigroup cross sections generate multigroup cross sec-

tions
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Appendix A

Sample A3MCNP Files for Geometry Example 1

A.1 A3MCNP Input File

Mesh generation example 1: box-in-a-box
c
c CELL CARDS
1 1 -1.0 11 -12 21 -22 31 -32 imp:n 1 $ inner box
2 2 -2.0 10 -13 20 -23 30 -33 #1 imp:n 1 $ outer box
3 0 -100 (-10:13:-20:23:-30:33) imp:n 0
4 0 100 imp:n 0

c
c SURFACE CARDS
10 px 0.0
11 px 4.0
12 px 8.0
13 px 12.0
20 py 0.0
21 py 4.0
22 py 8.0
23 py 12.0
30 pz 0.0
31 pz 4.0
32 pz 8.0
33 pz 12.0
100 so 200.0

c
c DATA CARDS
mode n
c
c source cards
sdef erg=d2 pos=d1
si1 l .1 .1 .1
sp1 d 1
c CASK 22-group neutron energy structure
si2 h 0.0 4.14000E-07 1.12000E-06 3.06000E-06 1.07000E-05

2.90000E-05 1.01000E-04 5.83000E-04 3.35000E-03 1.11000E-01
5.50000E-01 1.11000E+00 1.83000E+00 2.35000E+00 2.46000E+00
3.01000E+00 4.06000E+00 4.96000E+00 6.36000E+00 8.18000E+00
1.00000E+01 1.22000E+01 1.50000E+01

sp2 d 0 1.0 21r
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c
c material cards
m1 13027.60c 1.000
m2 8016.60c 0.333 1001.60c 0.667
c
c
c
c -------------------------------------------------------------------
c end of standard MCNP input / beginning of A3MCNP input
c -------------------------------------------------------------------
c
c sn general parameters
c isn isrc igm nsctm iht ihm iups neut
sngp 1 1 22 3 3 43 0 22
c
c definition of initial sn fine mesh
c xl xu yl yu zl zu dx dy dz kprn
snmsh 0. 12. 0. 12. 0. 12. 1. 1. 1. 6
c
c sn boundary conditions - snbc()=(ibl,ibr,ibi,ibo,ibb,ibt)
c ibl ibr ibi ibo ibb ibt
snbc 0 0 0 0 0 0
c
c sn energy group structure
c CASK 22-group neutron energy structure
snsi 4.14000E-07 1.12000E-06 3.06000E-06 1.07000E-05 2.90000E-05

1.01000E-04 5.83000E-04 3.35000E-03 1.11000E-01 5.50000E-01
1.11000E+00 1.83000E+00 2.35000E+00 2.46000E+00 3.01000E+00
4.06000E+00 4.96000E+00 6.36000E+00 8.18000E+00 1.00000E+01
1.22000E+01 1.50000E+01

c
c sn adjoint energy spectrum (response function)
c CASK 22-group neutron flux-to-dose conversion factors
snsp 3.780E-03 3.960E-03 4.140E-03 4.320E-03 4.500E-03 4.680E-03

4.680E-03 4.320E-03 6.480E-03 5.400E-02 1.188E-01 1.332E-01
1.296E-01 1.260E-01 1.260E-01 1.296E-01 1.332E-01 1.404E-01
1.476E-01 1.476E-01 1.656E-01 2.088E-01

c
c btp1 btp2
snthn 1.0 2.0
c
c nxcr nycr xcr1 xcr2 ycr1 ycr2
snacc 2 2 4.0 8.02 4.0 8.0
c
end-of-file
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A.2 Additional Input File for A3MCNP (zaid.in)

116 = mtp
1001 1 This file corresponds to the CASK library DLC-23
2004 5
4009 9
5010 13
6000 17
6012 17
7014 21
8016 25
11023 29
12000 33
13027 37
14000 41
19000 45
20000 49
22000 53
24000 57
25055 61
26000 65
28000 69
29000 73
40000 77
42000 81
50000 85
73181 89
74000 93
82000 97
92235 101
92238 105
94239 109
94240 113

t terminator
13
1000 1001 1002 1003 2000 2001 2002 2003 4000 4001 4002 4003
5000 5001 5002 5003 6000 6001 6002 6003 7000 7001 7002 7003
8000 8001 8002 8003 11000 11001 11002 11003 12000 12001 12002
12003 13000 13001 13002 13003 14000 14001 14002 14003
19000 19001 19002 19003 20000 20001 20002 20003
22000 22001 22002 22003 24000 24001 24002 24003
25000 25001 25002 25003 26000 26001 26002 26003
28000 28001 28002 28003 29000 29001 29002 29003
40000 40001 40002 40003 42000 42001 42002 42003
50000 50001 50002 50003 73000 73001 73002 73003
74000 74001 74002 74003 82000 82001 82002 82003
92350 92351 92352 92353 92380 92381 92382 92383
94390 94391 94392 94393 94400 94401 94402 94403

49


